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Suinmary The coil to double helix transition of seg- 
mented &-carrageenan was induced by 0.1 mol d n ~ - ~  
NaCl and observed by a polarimetric stopped-flow 
technique ; activation parameters for helix nucleation are 
strikingly different from those observed in polynucleotide 
double helix formation. 

EXTENSIVE investigations of the transitions from coil to 
double helix forms of poly- and oligo-nucleotides have been 

carried out, using both equilibrium and dynamic tech- 
niques.1,2 In  this communication we report the first 
example of a study of the dynamics of the coil to helix 
transition of a polysaccharide. 

&-Carrageenan is an alternating polysaccharide which is 
transformed from coil to double helix on reducing the 
temperature or increasing the salt concentration. Structur- 
ally regular segments (Figure 1) were prepared from the  
native material, using Smith degradation followed by 
treatment with alkaline b~rohydr ide .~  
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FIGURE 1. Segmented .-carrageenan. n ca. 100 for our sample. 

We have studied the dynamics of the salt-induced 
transition of segmented t-carrageenan, using a stopped-flow 
p~larimeter.~ Out-gassed and filtered aqueous solutions of 
the polymer, with disaccharide residue concentration ca. 

mol dm-3 assayed by polarimetry, were mixed with 
equal volumes of 0.2 mol dm-3 NaCl. In all cases, transi- 
tion amplitudes were found to be in excellent agreement 
with values calculated from reactant and product rotations. 

Between 5 and 10 runs were analysed a t  each of 8 tempera- 
tures in the range 291-305 K, using the rate equation (1)5 

k l  
for the kinetic scheme, 2 coil + helix, where a,  is the total 

k- 1 

+disaccharide residue concentration, and x and xe are 
disaccharide residue concentrations in the helix form at  
time t and at  equilibrium, respectively. Values of xe/a, 
were found from analysis of optical rotation curves as 
previously described. 

The fit with equation (1 )  accords with the conclusion from 
,equilibrium studies that the ordering process is due to a two 
state, all-or-none transition from the single coil to the 
double helix.6 97 

The generalized model of Crothers, Davidson, and 
Kallenbach for such a transitions requires the use of equation 
( 2 )  to find the activation enthalpy for helix nucleation,AH*. 

d ln[kl/( 1 - K)]/dT = AH*/RT2 (2 )  

K is the equilibrium constant for the helix-to-coil transition 
of an elementary unit of the chain. It was calculated 
using equation (3),* where AHp was determined calori- 

metrically6 per pair of disaccharide residues. The inte- 
grated form of equation (2 )  was used to plot our data (see 

FIGURE 2. Activation energy plots for second order rate 
constants for helix formation, k, ,  and helix nucleation &/( 1 - K ) .  

Figure 2) .  Rate constants and activation parameters for 
segmented t-carrageenan and poly Afpoly U9 of similar 
ii?, are summarised in the Table. 

TABLE. Kinetic parameters for transitions from coil to double 
helix at 298 K in 0.1 mol dm-3 NaCl for segmented &-carrageenan 

and poly A + poly U 

Segmented 
&-carrageenan poly A + poly U 

R,/dm3 (mol residue)-’+ 5.6 x 103 9.8 x 104 

1.5 x 105 
[kl / ( i  - w d m 3  (mol 

residue) -l s-1 3.0 x 104 
T,/K 314 331 
AHf/k J (mol residue pair) -l 10” 25 
AH*/kJ mol-l 105 f 2 27 
AS*/J (mol residue)-l K-l 184 f 5 - 66 

a See ref.6. 

The most striking contrast between the kinetics of poly- 
saccharide and polynucleotide double-helix nucleation lies 
in the activation parameters; typically AH* < 30 kJ mol-l 
and AS* < -50 J K-l (mol residue)-1 for oligonucleotides2 
and polynucleotides,s-lO while for segmented L-carrageenan, 
AH* = 105 kJ mol-l and AS* = 184 J K-l (mol residue)-l. 
This implies that there are substantial differences between 
the molecular mechanisms for nucleation in the two classes 
of biopolymers. In particular, the change of sign of AS* 
may indicate the greater importance of solvation changes of 
site-bound ions and/or the chain itself in the polysaccharide 
case. 
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